Beauty of Mathematics Decal PSET \#9 Solutions

Due 11/15

Let's consider the integers mod 7 , which consists of the numbers $\{0,1,2,3,4,5,6\}$.

1. Remember we should be able to divide; so which of these numbers is " $1 / 2$ "? (That is, which number can we multiply by 2 to get 1 ?)
Let's compute all the multiples of 2 .

$$
\begin{aligned}
& 0 * 2=0 \\
& 1 * 2=2 \\
& 2 * 2=4 \\
& 3 * 2=6 \\
& 4 * 2=1(\text { of course } 4 * 2=8 \text { but } 8 \text { reduces to } 1 \bmod 7) \\
& 5 * 2=3(\text { etc. }) \\
& 6 * 2=5
\end{aligned}
$$

Since $4 * 2=1$, we see that " $1 / 2$ " is 4 .
2. Some of these numbers are squares, and others are not. Show that 3 is a "square root" of 2, but that 5 has no square root.
Let's compute all the squares.

$$
\begin{aligned}
& 0^{2}=0 \\
& 1^{2}=1 \\
& 2^{2}=4 \\
& 3^{2}=2\left(\text { of course } 3^{2}=9, \text { but } 9 \text { reduces to } 2 \bmod 7\right) \\
& 4^{2}=2(\text { etc. }) \\
& 5^{2}=4 \\
& 6^{2}=1
\end{aligned}
$$

Observe that 5 is not the square of anything, so it has no square root; but $3^{2}=2$ so 3 is a "square root" of 2.

Now let's instead consider the integers $\bmod 6$, consisting of $\{0,1,2,3,4,5\}$.
3. Show that there is no " $1 / 2$ " here; that is, multiplying something by 2 will never give 1 .

Let's compute all the multiples of 2 .

$$
\begin{aligned}
& 0 * 2=0 \\
& 1 * 2=2 \\
& 2 * 2=4 \\
& 3 * 2=0(\text { of course } 3 * 2=6 \text { but } 6 \text { reduces to } 0 \bmod 6) \\
& 4 * 2=2 \text { (etc. }) \\
& 5 * 2=4
\end{aligned}
$$

We see that nothing multiplies 2 to make 1 , so there is no " $1 / 2$ " here.

Observe that we can't necessarily divide mod 6, but we can divide mod7. This is because 7 is prime and 6 is not.

